Literature
[1] Eder, M., Amini, S., & Fratzl, P. (2018). Biological composites—complex structures for functional diversity. Science, 362(6414), 543-547.
[2] Ding, D., Guerette, P. A., Hoon, S., Kong, K. W., Cornvik, T., Nilsson, M., ... & Miserez, A. (2014). Biomimetic production of silk-like recombinant squid sucker ring teeth proteins. Biomacromolecules, 15(9), 3278-3289.
[3] Ding, D., Pan, J., Lim, S. H., Amini, S., Kang, L., & Miserez, A. (2017). Squid suckerin microneedle arrays for tunable drug release. Journal of Materials Chemistry B, 5(43), 8467-8478.
[4] Deepankumar, K., Lim, C., Polte, I., Zappone, B., Labate, C., De Santo, M. P., ... & Miserez, A. (2020). Supramolecular β‐Sheet Suckerin–Based Underwater Adhesives. Advanced Functional Materials, 30(16), 1907534.
[5] Hiew, S. H., & Miserez, A. (2017). Squid sucker ring teeth: Multiscale structure–property relationships, sequencing, and protein engineering of a thermoplastic biopolymer. ACS Biomaterials Science & Engineering, 3(5), 680-693.
[6] Latza, V., Guerette, P. A., Ding, D., Amini, S., Kumar, A., Schmidt, I., ... & Masic, A. (2015). Multi-scale thermal stability of a hard thermoplastic protein-based material. Nature communications, 6(1), 1-8.
[7] Hiew, S. H., & Miserez, A. (2017). Squid sucker ring teeth: Multiscale structure–property relationships, sequencing, and protein engineering of a thermoplastic biopolymer. ACS Biomaterials Science & Engineering, 3(5), 680-693.
[8] Ding, D., Guerette, P. A., Fu, J., Zhang, L., Irvine, S. A., & Miserez, A. (2015). From Soft Self‐Healing Gels to Stiff Films in Suckerin‐Based Materials Through Modulation of Crosslink Density and β‐Sheet Content. Advanced Materials, 27(26), 3953-3961.
[9] Buck, C. C., Dennis, P. B., Gupta, M. K., Grant, M. T., Crosby, M. G., Slocik, J. M., ... & Naik, R. R. (2019). Anion‐Mediated Effects on the Size and Mechanical Properties of Enzymatically Crosslinked Suckerin Hydrogels. Macromolecular bioscience, 19(3), 1800238.
[10] Kumar, A., Mohanram, H., Kong, K. W., Goh, R., Hoon, S., Lescar, J., & Miserez, A. (2018). Supramolecular propensity of suckerin proteins is driven by β-sheets and aromatic interactions as revealed by solution NMR. Biomaterials science, 6(9), 2440-2447.
[11] Kamionka, M. (2011). Engineering of therapeutic proteins production in Escherichia coli. Current Pharmaceutical Biotechnology, 12(2), 268-274.
[12] Rosano, G. L., Morales, E. S., & Ceccarelli, E. A. (2019). New tools for recombinant protein production in Escherichia coli: a 5‐year update. Protein Science, 28(8), 1412-1422.
[13] Slotta, U. K., Rammensee, S., Gorb, S., & Scheibel, T. (2008). An engineered spider silk protein forms microspheres. Angewandte Chemie International Edition, 47(24), 4592-4594.
[14] Lammel, A., Schwab, M., Slotta, U., Winter, G., & Scheibel, T. (2008). Processing conditions for the formation of spider silk microspheres. ChemSusChem, 1(5), 413-416.
[15] De La Vega, J. C., Elischer, P., Schneider, T., & Häfeli, U. O. (2013). Uniform polymer microspheres: monodispersity criteria, methods of formation and applications. Nanomedicine, 8(2), 265-285.
[16] Liu, W., Chen, X. D., & Selomulya, C. (2015). On the spray drying of uniform functional microparticles. Particuology, 22, 1–12.
[17] Liu, W., Wu, W. D., Selomulya, C., & Chen, X. D. (2011). Uniform Chitosan Microparticles Prepared by a Novel Spray-Drying Technique. International Journal of Chemical Engineering, 2011, 1–7.
[18] Wang, J., Li, Y., Wang, X., Wang, J., Tian, H., Zhao, P., Tian, Y., Gu, Y., Wang, L., & Wang, C. (2017). Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines, 8(1), 22.
[19] Li, W., Zhang, L., Ge, X., Xu, B., Zhang, W., Qu, L., Choi, C.-H., Xu, J., Zhang, A., Lee, H., & Weitz, D. A. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 47(15), 5646–5683.
[20] He, F., Zhang, M., Wang, W., Cai, Q., Su, Y., Liu, Z., Faraj, Y., Ju, X., Xie, R., & Chu, L. (2019). Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Advanced Materials Technologies, 4(6), 1800687.